2 CIn $\begin{aligned} & \text { International Collegiate } \\ & \text { Programming Contest }\end{aligned}$

B: Euclid

In one of his notebooks, Euclid gave a complex procedure for solving the following problem. With computers, perhaps there is an easier way.

In a 2D plane, consider a line segment AB , another point C which is not collinear with AB , and a triangle DEF. The goal is to find points G and H such that:

- $\quad \mathrm{H}$ is on the ray AC (it may be closer to A than C or further away, but angle CAB is the same as angle HAB)
- ABGH is a parallelogram (AB is parallel to HG, AH is parallel to BG)
- The area of parallelogram $A B G H$ is the same as the area of triangle DEF

The Input

There will be several test cases. Each test case will consist of twelve real numbers, with no more than 3 decimal places each, on a single line. Those numbers will represent, in order:

AX AY BX BY CX CY DX DY EX EY FX FY
where point A is ($\mathbf{A X}, \mathbf{A Y}$), point \mathbf{B} is ($B X, B Y$), and so on. Points A, B and C are guaranteed to NOT be collinear. Likewise, D, E and F are also guaranteed to be non-collinear. Every number is guaranteed to be in the range from -1000.0 to 1000.0 inclusive. End of the input will be signified by a line with twelve 0.0 's.

C1 $\begin{aligned} & \text { International Collegiate } \\ & \text { Programming Contest }\end{aligned}$

The Output

For each test case, print a single line with four decimal numbers. These represent points G and H , like this:

```
GX GY HX HY
```

where point \mathbf{G} is (GX,GY) and point H is (HX,HY). Print all values rounded to 3 decimal places of precision (NOT truncated). Print a single space between numbers. Do not print any blank lines between answers.

Sample Input

```
0 0 5 0 0 5 3 2 7 2 0 4
1.3 2.6 12.1 4.5 8.1 13.7 2.2 0.1 9.8 6.6 1.9 6.7
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
```


Sample Output

```
5.000 0.800 0.000 0.800
13.756 7.204 2.956 5.304
```

